Connect with us

Science

Why a microwave-beam experiment will launch aboard the Air Force’s secretive X-37B space plane | Live Science

Published

on

Why a microwave-beam experiment will launch aboard the Air Force’s secretive X-37B space plane | Live Science_5ebf2129a1d2c.jpeg

A secretive military space plane will soon test the idea of using microwave beams to send solar power to Earth from space. The U.S. Air Force’s X-37B space plane is expected to launch into orbit Saturday (May 16) with an experiment onboard that tests the possibility.

The Photovoltaic Radiofrequency Antenna Module Flight Experiment (PRAM-FX) represents the first orbital test of such a sci-fi technology since the 19th century — solar satellite power. Build a big solar array in orbit, the idea goes, and it could collect enough sunlight (unfiltered by atmospheric effects or clouds,) to generate a powerful beam of microwaves. A collection station on Earth would then convert that beam into useful power. Launch any satellite into a high enough orbit and it will receive a near-constant stream of sunlight, with only brief passes through the Earth’s shadow. A whole constellation of solar arrays might offer uninterrupted 24/7 power.

“The idea got a lot of attention, and sort of came into its own in the late 60s, early 70s, when there became an imperative to explore energy sources other than fossil fuels ,” when fossil fuel supplies became unstable and prices skyrocketed, said Paul Jaffe, a civilian electronics engineer at the U.S. Naval Research Laboratory (NRL) and leader of the NRL’s beamed energy research.

Related: The X-37B space plane: 6 surprising facts

That research tapered off as fuel prices dropped, Jaffe said. But in 2007, the Department of Defense picked up the baton. A satellite beam is a much safer and more efficient way of getting power to an overseas military base than convoys of fuel trucks, he said. Those trucks, stuffed with combustible fuel, can be attacked and destroyed, risking the lives of their drivers and guards. But a microwave beam passes invisibly through the atmosphere unguarded. You can’t shoot at it.

With time, the beams might also power military drones, like the ones now used for spying and killing overseas. Powered by a microwave beam, the drones could buzz endlessly overhead without ever having to land to refuel. (Even further down the road, of course, there might be civilian applications for the technology.)

So far, PRAM-FX can’t do any of that. But it offers the NRL team a first chance to test a key component of a solar power satellite in the environment where it would eventually function.

The experimental device sandwiches its electronics between a solar array and a backplate, according to Chris DePuma, an electronics engineer at the NRL also working on the project. The solar array collects energy from the sun, converts it to a DC electric current, and then uses that current to power a 2.45 gigahertz microwave “that theoretically in the future would be transmitted out of an antenna pointed toward a receiver site,” DePuma told Live Science.

For PRAM-FX’s purposes though, the microwave energy lands on a coaxial cable that “dumps it off” into an instrument used to record data, DePuma said. The NRL researchers will compare that output to the energy taken in using the solar array to figure out the efficiency of their setup.

“This will inform the feasibility and the economics of something like solar power satellites,” Jaffe told Live Science.

This isn’t the first time these researchers have tested the equipment. Experiments in vacuum chambers on Earth, using lamps to mimic the effects of the orbital sun, have offered clues as to how PRAM-FX will operate. But there’s nothing quite like being up there, the researchers said.

The secretive platform

PRAM-FX will be one of several research payloads aboard the X-37B when it launches from Cape Canaveral, Florida on Saturday. That’s unusual: In its previous five missions, the Air Force didn’t mention X-37B carrying scientific payloads. In its cumulative seven years and 10 months in orbit, no details about the space plane’s payloads or precise purpose were ever disclosed.

This time around though, a bit more information is on offer. According to a Space Force statement, the X-37B will carry a “service module” into space with the spaceplane’s first payload of scientific experiments. It will deploy a satellite known as FalconSat-8 with some experiments aboard, while PRAM-FX and another experiment will remain attached to the X-37B.

(The X-37B belongs to the Air Force, but the Space Force is handling the launch. The Space Force is a nascent branch of the military, established in December 2019 by President Donald Trump and charged with handling space warfare.)

A key advantage of affixing PRAM-FX to the X-37B, Jaffe said, is that his team can take advantage of the X-37B’s communications systems, propulsion, and other resources. That saves the NRL team the trouble and expense of building in all the machinery necessary for a free-floating satellite to operate. And the X-37B’s orbit will offer lots of different sun angles at which to test the equipment, DePuma said.

Related: US Air Force’s secretive X-37B space plane (infographic)

The uncrewed space plane operates a bit like a smaller, robotic Space Shuttle — launching atop an Atlas V rocket and staying in orbit for months on end. Its previous, fifth mission lasted 780 days before the machine glided back to Earth on Oct. 27, 2019.

NRL researchers considered other possibilities for getting PRAM-FX into space, including one of NASA’s space station resupply missions, before landing on the X-37B.

“We did explore a number of different hosts as possibilities, and ultimately this offered the best combination of availability for flight and ability to integrate with — since our experiment isn’t well suited to being its own satellite because of its [bulky] dimensions,” Jaffe said.

This won’t lead to a weapon, at least according to the Department of Defense scientists

If you’ve played the game SimCity, you might be familiar with a fictional scenario in which the beam from one such solar satellite gets diverted, setting fire to the surrounding area. It’s also easy to imagine an orbital microwave beam being used as a weapon.

Related: The 22 weirdest military weapons

While it might not be technically impossible to engineer a disaster situation, Jaffe said, it’s also not likely.

“Most people hear ‘microwave’ and picture that thing in their kitchen that cooks things,” Jaffe said.

But microwave frequencies are also used in Wi-Fi and Bluetooth systems on your phone, he said, and they aren’t inherently dangerous. And they aren’t a terribly efficient way to set things on fire across great distances, because they have relatively low power densities.

“A way to think about power density is if you go out in the sun on a clear afternoon you’re not going to burst into flames … but in that same sunlight that won’t burst you into flames if you take a magnifying glass you can use it to set something on fire,” Jaffe said. “Not because you’re adding energy, but because you’re concentrating the energy that falls on the magnifying glass such that it falls on a very small point.”

That isn’t a realistic scenario here, Jaffe said.

“For microwaves, it is very difficult to focus them in the same way that a magnifying glass focuses sunlight,” Jaffe said. “That’s why you need these really big antennas.”

The bigger the antenna you have, the higher the power density you can create on Earth. But even huge antennas, more than a few miles long, would struggle to concentrate power to dangerous levels from the high orbits necessary. 

“A microwave-based solar satellite would be very difficult to weaponize, if it could even be done at all,” Jaffe said.

Still, if a full constellation of solar power satellites ever do get built, he said, it will be key to design them so that they don’t exceed limits on microwave power already set by radiation safety regulators to prevent cancers and fires.

In the near term, Jaffe said, this technology is being developed for the military. But down the road he said he hopes it will lead to a futuristic clean power source that could benefit everyone — and give the U.S. a new near-monopoly over a global energy supply. 

Originally published on Live Science.

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Science

Astronomers Detect a Suspiciously Shaped Galaxy Lurking in The Very Early Universe

Published

on

By

Astronomers Detect a Suspiciously Shaped Galaxy Lurking in The Very Early Universe_5ec5b2be6848e.jpeg

Around 13.8 billion years ago, somehow the Universe popped into existence. But it didn’t come fully equipped. At some point, the first stars formed, and the first galaxies. How and when this happened is still a mystery astronomers are trying to solve… but one galaxy could have a vitally important key.

 

It’s called DLA0817g – nicknamed the Wolfe Disk – a cool, rotating, gas-rich disc galaxy with a mass of about 72 billion times that of our Sun. And the Atacama Large Millimeter/submillimeter Array has snapped it a massive 12.5 billion light-years away – when the Universe was just 10 percent of its current age.

It’s the earliest rotating disc galaxy astronomers have found yet, and its very existence changes our understanding of galaxy formation in the early Universe.

Most of the galaxies in the early Universe are a hot mess, literally. They’re all blobby, with stars flying every which way, and rather high temperatures. Astronomers have interpreted this to mean that they grew large by colliding and merging with other galaxies – a hot, messy process.

“Most galaxies that we find early in the Universe look like train wrecks because they underwent consistent and often ‘violent’ merging,” explained astronomer Marcel Neeleman of the Max Planck Institute for Astronomy in Germany.

“These hot mergers make it difficult to form well-ordered, cold rotating disks like we observe in our present Universe.”

 

Under this scenario, it takes a long time for the galaxies to cool down and smooth out into the more orderly rotating disc galaxies like the Milky Way. We don’t generally start seeing them until about 4 to 6 billion years after the Big Bang.

This is the “hot” mode of galaxy formation. But astronomers had also predicted and simulated another way – the “cold” mode. 

First, you need to start with the primordial soup, an ionised quark-gluon plasma that filled the Universe before the formation of matter. To go from this homogeneous plasma to a Universe filled with stuff, astrophysicists have run simulations that suggest dark matter is responsible.

We don’t know what dark matter is. We can’t detect it directly, but it interacts gravitationally with normal matter. It helps to hold galaxies together, and we believe that it could be crucial to galaxy formation, clumps of it pulling together gas and stars into galaxies.

Supercomputer simulations have shown that a massive network of dark matter in the early Universe could have facilitated the formation of cool galaxies. If the gas was cool to start with, it could have been fed along filaments of the network into the dark matter clumps, accreting into large, cool, orderly disc galaxies.

 

But the only way to confirm this model is through observational evidence, so the researchers went looking, using the light of even more distant galaxies, called quasars, to illuminate the way.

Distant galaxies are very hard to see, but quasars are among the most luminous objects in the Universe – galaxies lit by an active supermassive black hole, the space around it blasting out radiation as it feeds. The team turned ALMA’s powerful capabilities to these distant quasars, looking for signatures in their light that showed that it had passed through a gas-filled galaxy on the way.

They found it. The light from one of the quasars they imaged had passed through a region rich with hydrogen – the signature of the Wolfe Disk.

And there was something else. The light on one side of the disc was compressed, or blueshifted. We see this when something is moving towards us. And the light from the other side was stretched, or redshifted – moving away from us. The object was rotating.

Those Doppler shifts, as they are known, then allowed the researchers to calculate the velocity of the galaxy’s rotation: around 272 kilometres per second.

What’s even more wild is that the team believes the Wolfe Disk isn’t one of a kind. 

“The fact that we found the Wolfe Disk using this method, tells us that it belongs to the normal population of galaxies present at early times,” Neeleman said.

“When our newest observations with ALMA surprisingly showed that it is rotating, we realised that early rotating disk galaxies are not as rare as we thought and that there should be a lot more of them out there.”

The team will continue their search for these galaxies to find out just how common cold accretion was in the early Universe.

The research has been published in Nature.

 

Continue Reading

Science

NASA’s head of human spaceflight abruptly resigns, citing ‘mistake’ – CNN

Published

on

By

NASA’s head of human spaceflight abruptly resigns, citing ‘mistake’ – CNN_5ec5b2b4e863d.jpeg

His departure was effective on Monday.

The incident in question was related to the Artemis Program, a source familiar with the matter told CNN Business.
The Artemis Program seeks to return astronauts to the moon by 2024, which was announced by the Trump administration last year and has been criticized as unrealistic. The source familiar with the reason for Loverro’s departure said the issue centered on contracts that were awarded earlier this year for development of lunar landers, or vehicles that can carry astronauts to the moon’s surface.

When reached by phone Tuesday evening, Loverro declined to comment on the reason for his departure.

Loverro began serving in his role as the head of NASA’s human spaceflight programs in December, replacing William Gerstenmaier, who served in the role for more than a decade. In his nearly 700-word note, Loverro told NASA workers only that leaders are “called on to take risks” and added that, “I took such a risk earlier in the year because I judged it necessary to fulfill our mission.”

“Now, over the balance of time, it is clear that I made a mistake in that choice for which I alone must bear the consequences,” Loverro wrote. “And therefore, it is with a very, very heavy heart that I write to you today to let you know that I have resigned from NASA effective May 18th, 2020.”

NASA’s Office of the Inspector General announced an audit of the agency’s acquisition strategy for the Artemis program in March, though it’s unclear if that review was related to Loverro’s departure. It’s also unclear exactly what role Loverro played in the selection process.
The source familiar with the matter, who asked to remain anonymous because the space agency has not yet publicized details, told CNN Business that the incident in question was unrelated to NASA’s historic milestone next week when SpaceX, NASA’s partner in the Commercial Crew Program, launches two astronauts to the International Space Station. That mission will mark the first time since 2011 that humans have launched into orbit from US soil, and Loverro was slated to preside over a final technical review meeting on Thursday, ahead of launch on May 27. Steve Jurczyk, NASA’s associate administrator, will take over Loverro’s role at that meeting, according to NASA.

Ken Bowersox, NASA’s acting deputy associate administrator for human exploration and operations, will become NASA’s interim head of human spaceflight.

Loverro’s exit immediately raised some eyebrows on Capitol Hill.

Meet the NASA astronauts who will fly on historic SpaceX mission

Congresswoman Eddie Bernice Johnson, a Democrat from Texas who chairs the House space and science committee, said in a statement that she was “shocked” by the news.

“I trust that NASA Administrator Bridenstine will ensure that the right decision is made as to whether or not to delay the launch attempt,” Johnson said. “Beyond that, Mr. Loverro’s resignation is another troubling indication that the Artemis Moon-Mars initiative is still not on stable footing. I look forward to clarification from NASA as to the reasons for this latest personnel action.”

Kendra Horn, a Democrat from Oklahoma who chairs a House subcommittee on space, said in a tweet Tuesday that she is “deeply concerned over this sudden resignation, especially eight days before the first scheduled launch of US astronauts on US soil in almost a decade.”

The timing of Loverro’s departure was related to when Jurczyk, the associate administrator, made a recommendation to NASA Administrator Jim Bridenstine, the source said. It was unrelated to next week’s Crew Dragon launch, the source added.

Jurczyk was the source selection officer for the Artemis lunar lander contract awards, according to public documents.

In announcing Loverro’s appointment in October, NASA chief Jim Bridenstine called Loverro “a respected strategic leader in both civilian and defense programs” who “will be of great benefit to NASA at this critical time in our final development of human spaceflight systems for both Commercial Crew and Artemis.”

An agency-wide email sent on Tuesday said Loverro “hit the ground running” after his appointment in 2019 and had made “significant progress in his time at NASA.”

“His leadership of [NASA’s Human Exploration and Operations] has moved us closer to our goal of landing the first woman and the next man on the moon in 2024,” the email said. It said his resignation was effective immediately, though it did not provide details on the reason for his exit.

A NASA spokesperson declined to comment.

Loverro told CNN Business he is “100% confident” that leadership will be able to carry out the SpaceX mission. He added that he believes NASA’s ambitious human spaceflight goals are “doable.” “But,” he added, “it will take risk takers to get us there, and I hope folks who step in my shoes will continue to take risks.”

Next week’s SpaceX launch will mark the space agency’s highest-profile mission since the Space Shuttle program ended in 2011. SpaceX, which has a multibillion-dollar contract under NASA’s Commercial Crew Program, has worked for the better part of a decade to ready its Dragon spacecraft for crewed flights to the International Space Station. Since the Shuttle retired, NASA has had to rely on Russia for rides to the ISS.

Continue Reading

Science

In an orange swirl, astronomers say humanity has its first look at the birth of a planet

Published

on

By

In an orange swirl, astronomers say humanity has its first look at the birth of a planet_5ec5b2aa94bef.jpeg

An image of a mesmerizing cosmic spiral, twisting and swirling around a galactic maw, may be the first direct evidence of the birth of a planet ever captured by humanity.

The European Southern Observatory released a picture Wednesday of what astronomers believe shows the process of cosmic matter at a gravitational tipping point, collapsing into a new world around a nearby star.

Astronomers said the dramatic scene offers a rare glimpse into the formation of a baby planet, which could help scientists better understand how planets come to exist around stars.

“Thousands of exoplanets have been identified so far, but little is known about how they form,” the lead author of a study detailing the discovery, Anthony Boccaletti, an astronomer at the Observatoire de Paris in France, said in a statement.

Planets are thought to form out of the massive discs of gas and dust that surround young stars. As tiny specks of dust circle a star and collide with one another, some material starts to fuse, much like how rolling a snowball through more snow will eventually yield a bigger snowball. After billions of years, the clumps of material become large enough that the force of gravity shapes them into planets.

The new image peers into the disc of material around a young star known as AB Aurigae, which is 520 light-years from Earth in the constellation of Auriga. Amid the hypnotic spiral arms is a “twist,” visible in the photo as a bright yellow region in the center, that is thought to be a sign of a planet being born, said Emmanuel Di Folco, a researcher at the Astrophysics Laboratory of Bordeaux in France, who participated in the study.

When a planet forms, the clumps of material create wavelike perturbations in the gas- and dust-filled disc around a star, “somewhat like the wake of a boat on a lake,” Di Folco said.

The bright region at the center of the new image is thought to be evidence of such a disturbance, which had been predicted in models of planetary birth.

Download the NBC News app for breaking news and alerts

“The twist is expected from some theoretical models of planet formation,” said Anne Dutrey, an astronomer at the Astrophysics Laboratory of Bordeaux and co-author of the study, published Wednesday in the journal Astronomy & Astrophysics. “It corresponds to the connection of two spirals — one winding inwards of the planet’s orbit, the other expanding outwards — which join at the planet location.”

The new observations of the baby planet were made in 2019 and early 2020 by the European Southern Observatory’s Very Large Telescope in the Atacama Desert in northern Chile. The research team, made up of astronomers from France, Taiwan, the U.S. and Belgium, said the images are the deepest observations of the AB Aurigae system made to date.

Continue Reading

Trending