Connect with us

Science

How NASA engineers developed a ventilator for COVID-19 patients in just a month – The Verge

Published

on

How NASA engineers developed a ventilator for COVID-19 patients in just a month – The Verge_5eaa028bd356a.jpeg

Working as an engineer at NASA’s Jet Propulsion Laboratory, David Van Buren usually spends his time designing and building instruments for space telescopes or robots that will explore other worlds in our Solar System. But for the last month, Van Buren and a group of his colleagues at JPL have been working on a project that is truly unexplored terrain for them: making a ventilator to help patients sick with COVID-19.

While Van Buren had some previous experience in medical engineering, he’d never designed a ventilator before. But he and his co-workers at JPL are used to making things they don’t have any experience making. In fact, they’re used to making things that no one has experience making.

“When a scientist comes to us and says they want to go to a moon of Jupiter and drill into the ice and see what’s underneath, that’s something that’s never been done before,” Van Buren tells The Verge. “We’re used to looking at new problems — things people haven’t done before or at least that we haven’t done before — and figuring out how to do them.”

After a whirlwind 37 days of research, planning, and tinkering, a subset of engineers at JPL have created a prototype they’re calling the VITAL ventilator. A white digital box with a breathing tube attached, the ventilator is somewhere between the sophisticated high-end ventilators that the sickest patients need and a simple ambulatory bag that can be used as a temporary measure to quickly squeeze air into the lungs. The team didn’t want to interfere with the production of the more critical ventilators, so the VITAL ventilator is meant for the patients who still need breathing support but are not in the most dire conditions. It’s a temporary tool designed to last just three to four months in a hospital.

VITAL is tailored specifically for people with COVID-19, which helped to guide its design. “It’s pared down in all the things that it can do, to just retain those functions needed for COVID-19 patients,” says Van Buren.

The VITAL ventilator.
Image: NASA

Throughout January and February, Van Buren had been following the news about the spread of COVID-19 in China with growing concern. Pandemics have been on his mind ever since the outbreak of H1N1 in 2009 when his daughter had to be hospitalized because of the new flu strain.

When it became clear in early March that there was community spread of COVID-19 in Washington and California, Van Buren really started focusing on what he could do to help. Early models suggested that hospitals would not have enough capacity or equipment to handle the influx of COVID-19 patients. Van Buren figured JPL could be an asset in the fight. One day, he bumped into Rob Manning, JPL’s chief engineer, in the center’s cafeteria, and they started talking about what they could do. “We both had been thinking, given the circumstances, maybe the projects that we were spending our time on might not be the most important things we could be doing, given what we both recognized was about to happen,” Van Buren says.

Manning found money to form a small team, and the project kicked off on March 16th. The group contacted a pulmonologist named Michael Gurevitch who’s been working on ventilators for decades. He came in and told the team the exact requirements that were needed for ventilators, while a JPL employee took detailed notes on a giant whiteboard.

“We more or less applied the pattern we apply when we build an instrument to land on Mars and, say, drill through the surface and take measurements of what’s down below,” says Van Buren. “We engage with scientists. In this case, we engaged with the clinicians as to what exactly is needed, so that we can then engineer an instrument — or in this case, a ventilator.”

Eventually, other people at JPL joined the project, including Michelle Easter. Normally, she works on mechanisms known as actuators. These motors are used to deploy or rotate instruments like solar panels during a mission.

“Actuators are often a combination of mechanisms and electronics,” Easter tells The Verge. “And that’s exactly what the VITAL device is; it’s a mechanism that’s controlled by embedded electronics, and that type of design is something super comfortable for me.”

To make VITAL, the team tried to use as many common, off-the-shelf parts as possible, such as tubing, motors, valves, and electronics displays. That way, anyone manufacturing the device in the future wouldn’t need to special order anything needed for a more sophisticated ventilator. The team found that companies and vendors were eager to help provide supplies that could be scalable. And when they didn’t have what JPL needed, they gave them references.

“Companies were just opening up their Rolodexes and giving us the names of their competitors,” says Easter, “which is not what you think for a business mindset. But people threw all of the traditional competition out the window.”

Eventually, the team settled on the final VITAL design. Because the machine is tailored for COVID-19 patients, it’s focused on providing air delicately to stiff lungs — a hallmark symptom of the virus. Stiff lungs have a harder time expanding, so patients struggle to get enough air to breathe. VITAL is meant to provide enough air pressure to patients to inflate their lungs but not so much so that the lungs over-expand. The machine also works to ensure the lungs don’t completely deflate, either. COVID-19 patients have lung damage that makes the sides of their lungs inflamed and sticky. If all the air goes out of their lungs and the sides touch each other, they might stick together and make it even harder to open back up again. So VITAL tries to keep the lungs slightly inflated whenever patients exhale.

JPL is equipped with various test facilities, such as a giant vacuum chamber used to subject spacecraft to extreme environments.
Image: NASA

Now that the team has a working prototype, they’ve moved on to environmental testing with the device. Whenever NASA sends a spacecraft to another world, each vehicle must be subjected to extreme conditions — such as wide-ranging temperatures, intense vibrations, loud sounds, and more — to see if it can withstand the harsh environment of space. Many of those same tests are needed to qualify medical equipment, too, and JPL has the facilities to run them, including a giant vacuum chamber and setups to shake hardware rigorously.

“We build spacecraft not medical devices, but there are so many similar elements, because they both have to be extremely high reliability systems — for different reasons,” says Easter. “For spacecraft, once you put it up in space, you will never be able to go and fix it. So we have to verify that it’s absolutely perfect and works exactly as we expect in all conditions. Then, of course, for the medical devices, we’re connecting this to a human; we have to verify that we’re not going to hurt a person. They’re both very, very important.”

Since the Food and Drug Administration is encouraging organizations to create new devices quickly to combat COVID-19, many of the tests usually required to certify equipment are no longer needed. But JPL still has to do elevation testing with VITAL to see if the machine will work in places like Denver, for instance. They also need to do electromagnetic interference testing, which will determine if VITAL can operate normally if someone is, say, talking on a cellphone nearby.

While the final round of testing is being completed, JPL is awaiting word from the FDA on whether VITAL will receive an emergency use authorization. Once they get approval, the team will then send the design off to companies that can produce VITAL en masse and deliver the ventilators to hospitals in need. “We don’t do production,” says Van Buren. “We do make one or two of a kind, and we send them off to Mars or Saturn or somewhere. And so we have engaged a couple of companies to help us understand the mass production aspects.”

It’s unclear how the team will proceed when the VITAL ventilator is shipped out into the world. Many of the people on the team put their normal projects on pause to get this ventilator ready as soon as possible. They’ll likely go back to designing interplanetary space probes very soon, but they’ve been buoyed by their brief stint in the medical world.

“I think everybody on the team is just so grateful that we have something positive to contribute in our brainpower and our teamwork,” says Easter. “It definitely helps us to feel empowered in an otherwise powerless kind of situation.”

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Science

How the NFL made it to Super Bowl with no COVID-19 game cancellations – Axios

Published

on

By

How the NFL made it to Super Bowl with no COVID-19 game cancellations – Axios_60206e7fa4cd5.jpeg

The NFL’s giant COVID-19 experiment ends Sunday with the improbable feat of an on-time Super Bowl, capping a season with no canceled games.

Why it matters: The season suggests that with the right resources, safety measures and cooperation — all of which have been lacking in the general U.S. response — life can go on during the pandemic without uncontrolled spread of the virus. 

The big picture: The NFL decided early on that it wouldn’t require its thousands of players, coaches and other staff to live in a “bubble,” as other sports leagues had done.

  • Instead, the league scaled up the public health basics of social distancing, testing, contact tracing and isolation across all 32 teams. To prevent spread, officials were prepared to postpone games or bench players.

Jeff Miller, the NFL’s executive vice president of communications, public affairs and policy, told Axios: “The approach we took was to appreciate that there was an expectation that individuals would get COVID — and what could we do to prevent it from spreading throughout our facilities.”

  • “Our protocols were built on that premise — that living in our 32 communities during a pandemic was a risk, but we wanted to ensure that as best as possible we could prevent” virus spread.

Between the lines: Some of the NFL’s findings were published by the CDC — including what the league learned about transmission of the virus. 

  • The most important changes the league had to make over time related to “our evolution of what a high-risk contact was,” Miller said.

The league discovered that risky contacts with an infected person weren’t limited to 15-minute interactions within 6 feet. The definition instead became more complex, factoring in time, distance, ventilation and mask-wearing. 

  • “Those four factors all had an interplay within them, which was, in our experience, vastly more complicated than six feet and 15 minutes,” Miller said.

The bottom line: “We never saw the virus transmitted across the line of scrimmage,” Miller said — even when players who later tested positive participated in the game. 

  • The league was able to confirm this was the case through genetic sequencing.

Go deeper: Super Bowl preview

Continue Reading

Science

Coronavirus Variant First Found in Britain Now Spreading Rapidly in US – The New York Times

Published

on

By

Coronavirus Variant First Found in Britain Now Spreading Rapidly in US – The New York Times_60206e79978b2.jpeg

A more contagious variant of the coronavirus first found in Britain is spreading rapidly in the United States, doubling roughly every 10 days, according to a new study.

Analyzing half a million coronavirus tests and hundreds of genomes, a team of researchers predicted that in a month this variant could become predominant in the United States, potentially bringing a surge of new cases and increased risk of death.

The new research offers the first nationwide look at the history of the variant, known as B.1.1.7, since it arrived in the United States in late 2020. Last month, the Centers for Disease Control and Prevention warned that B.1.1.7 could become predominant by March if it behaved the way it did in Britain. The new study confirms that projected path.

“Nothing in this paper is surprising, but people need to see it,” said Kristian Andersen, a co-author of the study and a virologist at the Scripps Research Institute in La Jolla, Calif. “We should probably prepare for this being the predominant lineage in most places in the United States by March.”

Dr. Andersen’s team estimated that the transmission rate of B.1.1.7 in the United States is 30 percent to 40 percent higher than that of more common variants, although those figures may rise as more data comes in, he said. The variant has already been implicated in surges in other countries, including Ireland, Portugal and Jordan.

“There could indeed be a very serious situation developing in a matter of months or weeks,” said Nicholas Davies, an epidemiologist at the London School of Hygiene and Tropical Medicine who was not involved in the study. “These may be early signals warranting urgent investigation by public health authorities.”

Dr. Davies cautioned that U.S. data is patchier than that in Britain and other countries that have national variant monitoring systems. Still, he found results from some parts of the United States especially worrisome. In Florida, where the new study indicates the variant is spreading particularly quickly, Dr. Davies fears that a new surge may hit even sooner than the rest of the country.

“If these data are representative, there may be limited time to act,” he said.

Dr. Andersen and his colleagues posted their study online on Sunday. It has not yet been published in a scientific journal.

When the British government announced the discovery of B.1.1.7 on Dec. 20, Dr. Andersen and other researchers in the United States began checking for it in American coronavirus samples. The first case turned up on Dec. 29 in Colorado, and Dr. Andersen found another soon after in San Diego. In short order it was spotted in many other parts of the country.

But it was difficult to determine just how widespread the variant was. B.1.1.7 contains a distinctive set of 23 mutations scattered in a genome that is 30,000 genetic letters long. The best way to figure out if a virus belongs to the B.1.1.7 lineage is to sequence its entire genome — a process that can be carried out only with special machines.

The C.D.C. contracted with Helix, a lab testing company, to examine their Covid-19 samples for signs of B.1.1.7. The variant can deliver a negative result on one of the three tests that Helix uses to find the coronavirus. For further analysis, Helix sent these suspicious samples to Illumina to have their genomes sequenced. Last month Helix reached out to Dr. Andersen and his colleagues to help analyze the data.

Analyzing 212 American B.1.1.7 genomes, Dr. Andersen’s team concluded that the variant most likely first arrived in the United States by late November, a month before it was detected.

The variant was separately introduced into the country at least eight times, most likely as a result of people traveling to the United States from Britain between Thanksgiving and Christmas.

The researchers combined data from the genome sequencing with Helix’s overall test results to come up with an estimate of how quickly the variant had spread. It grew exponentially more common over the past two months.

In Florida, the scientists estimate that more than 4 percent of cases are now caused by B.1.1.7. The national figure may be 1 percent or 2 percent, according to his team’s calculations.

If that’s true, then a thousand or more people may be getting infected with the variant every day. The C.D.C. has recorded only 611 B.1.1.7 cases, attesting to the inadequacy of the country’s genomic surveillance.

In parts of the country where Helix doesn’t do much testing, it is likely delivering an underestimate of the spread, Dr. Andersen cautioned. “I can guarantee you that there are places where B.1.1.7 might be relatively prevalent by now that we would not pick up,” he said.

“There’s still a lot that we have to learn,” said Nathan Grubaugh, a virologist at Yale University who was not involved in the study. “But these things are important enough that we have to start doing things now.”

It’s possible that chains of B.1.1.7 transmission are spreading faster than other viruses. Or it might be that B.1.1.7 was more common among incoming travelers starting new outbreaks.

“I still think that we are weeks away from really knowing how this will turn out,” Dr. Grubaugh said.

The contagiousness of B.1.1.7 makes it a threat to take seriously. Public health measures that work on other variants may not be enough to stop B.1.1.7. More cases in the United States would mean more hospitalizations, potentially straining hospitals that are only now recovering from record high numbers of patients last month.

Making matters worse, Dr. Davies and his colleagues at the London School of Hygiene and Tropical Medicine posted a study online on Wednesday suggesting that the risk of dying of B.1.1.7 is 35 percent higher than it is for other variants. The study has yet to be published in a scientific journal.

Communities can take steps to fight variants like B.1.1.7, as Dr. Grubaugh and his Yale University colleagues recently described in the journal Cell. For instance, they said, health officials should reinforce messaging about wearing effective masks, avoiding large gatherings and making sure indoor spaces are well ventilated.

The scientists also urged governments to require sick leave for people diagnosed with Covid-19 to stop workplace spread. “Such measures could help to significantly reduce community transmission,” Dr. Grubaugh and his co-authors wrote.

Vaccinations can also be part of the strategy to fight B.1.1.7. In Israel, where the variant is now predominant, new cases, severe illnesses and hospitalizations have already dropped significantly in people over 65, a group that was given top priority for vaccines.

“What we need to do with the current vaccines is get them into as many people as we can as quickly as possible,” Dr. Andersen said.

Driving down B.1.1.7 will also reduce the risk that the variant will evolve into something even worse. Already in Britain, researchers have found samples of B.1.1.7 that have gained a new mutation with the potential to make vaccines less effective. It’s not clear whether these viruses will become common. But they demonstrate that the coronavirus has a lot of evolutionary space left to explore.

“We should expect them to crop up here,” Dr. Andersen said. “Whatever was true elsewhere is going to be true here as well, and we need to deal with it.”

Continue Reading

Science

Fifty years ago, Alan Shepard blasted from an endless sand trap and we just now found his ball – pennlive.com

Published

on

By

Fifty years ago, Alan Shepard blasted from an endless sand trap and we just now found his ball – pennlive.com_60206e737481d.jpeg

The most widely watched golf shot in history did not occur in a major tournament. It wasn’t even in a PGA event. In fact, it did not take place on Earth. And, as it turns out, its distance has been embellished by legend.

It was a one-handed chip with a converted Wilson Staff 6-iron club head adapted to an aluminum moon rock sample scooper. And the golfer was Alan Shepard, first American in space, 5th man on the Moon.

Shepard hit two golf balls on live television exactly half a century ago yesterday at the end of the Apollo 14 moonwalk. Because of the portable TV camera’s perpendicular angle to the flight of the ball, exactly how far the shots went was left up to the commentary of the jocular original “Mercury seven” astronaut. The first one, he clearly duffed.

But the second one appeared to be nutted and Shepard suggested it might’ve gone “miles and miles!”

Well, not exactly. But who’s keeping track?

Nobody really, until a 46-year-old British imaging specialist named Andy Saunders used his skills to enhance the clarity of long-sequestered video and photography from Apollo 14 and other moon missions. And the results are nothing short of astounding.

Saunders’ painstaking work used both new digital and traditional photo techniques to improve the brightness, sharpness and contrast of the 5-decade-old Apollo moon program (1968-72) shots so that we now can see more clearly all sorts of details hidden before – from the desolate gray surface to obscured faces of astronauts behind their helmet visors to intricate features of the lunar landers and equipment to, yes, the exact position of Shepard’s two golf shots.

Lunar golf ball

Enhanced NASA photo that now clearly shows one of Alan Shepard’s golf balls.Andy Saunders/NASA

Saunders’ photographs will be available later this year in a book entitled Apollo Remastered, to be published by Penguin Random House. Some have been posted and can be seen on the publisher’s advance website, ApolloRemastered.com.

Being the son of an industrial engineer at Apollo command/service module subcontractor North American Rockwell, I grew up amid the wonder of the U.S. space program. So, I was eager to spend a half hour on Friday with Saunders by phone from his home in Culcheth, Cheshire county, England.

As Saunders explains it, the original and clearest film negatives were socked away in NASA cold storage until very recently:

“Somewhere in the last five years, they finally got the original flight film out of the freezer and scanned it to an incredible resolution in about 1.3-gigobyte file sizes. And every minute detail that was in that camera is on this digital file.”

For someone like Saunders – a space nut since childhood who had developed considerable skill with image enhancing – this was like a gift from heaven.

“But of course, in an analog world, with photochemical processing, they weren’t designed for digital; they were designed to have light shining through them onto paper or in projection. So, you need to digitally enhance them to get the best out of them. And that’s what I’ve been using.”

Andy Saunders

British photo imaging specialist and author Andy Saunders will publish a book of his enhanced images of NASA’s moon landings later this year, to be entitled “Apollo Remastered”.Penguin Random House

Considering the advances in digital enhancement technology just over the past decade, this offered a unique opportunity to significantly clarify some of the most important images in human history.

So, how far did those 6-iron shots go in one-sixth gravity? That’s been a subject of hyperbolic conjecture, not just a little encouraged by the playful Shepard before his death in 1998.

We’ll get to that. But first some background on how Shepard managed to golf on Earth’s sand trap satellite in the first place. He had been seeded with the idea by an offhand crack from Bob Hope during the comedian’s visit to the Johnson Spaceflight Center in Houston in 1970. The idea stuck with Shepard when he was slated for Apollo 14 later that year.

Shepard tells the entire story of the lunar golf shot at 1:02:30 of an 88-minute interview with former NBC spaceflight correspondent and Philadelphia native Roy Neal conducted in 1998, five months before the astronaut’s death from leukemia:

“I was an avid golfer. And before the flight, I was intrigued that a ball, with the same clubhead speed, would go six times as far and it’s time of flight would be at least six times as long. It would not curve, because there’s no atmosphere to make it slice or hook.

“So, I thought: What a neat place to whack a golf ball.”

When Shepard approached NASA manned spaceflight director Bob Gilruth with his idea, the response was immediate and emphatic: Forget about it. But Shepard persisted with an explanation: The only extra cargo was the clubhead, crafted by a pro he knew in Houston, plus a couple of golf balls:

“Which I paid for myself,” Shepard added with puckish grin. “No taxpayer expense.”

All of that would be left on the lunar surface. If anything at all went amiss during either of two 4½-hour extravehicular activities (EVA) on the Moon, Shepard agreed he wouldn’t do it. If everything went as planned, he’d hit a couple of balls at the very end of the second EVA on Feb. 6, 1971, climb up the ladder with partner and lunar module pilot Ed Mitchell and close the hatch.

In other words, it was sort of the mic drop of the show. And by that point in the Apollo program – with moon missions incredibly becoming old hat more than two years after the first lunar orbit of Apollo 8, and 18 months after the first manned landing of Apollo 11 – the show mattered. Gilruth relented.

Lunar 6-iron

The lunar 6-iron, used by NASA astronaut Alan Shepard during the Apollo 14 moonwalk on Feb. 6, 1971. A Houston golf pro friend of Shepard’s made the club from a Wilson 6-iron head and a lunar-sample-scooper handle. Shepard later donated the club to the USGA museumGetty Images/Steve Pyke

As it turned out, all went swimmingly with Shepard and Mitchell’s EVA, so out came the modified club head and two balls the commander had stowed in a pocket in his suit. He snapped it on the moonrock scooper, tossed a ball in the dust and addressed it with some great flair.

Shepard knew from trying out his flexibility in the bulky suit during training that there was no way he could either manage much of a backswing or keep both gloved hands on the scooper handle. His vision was also limited by inability to bend his neck much inside the EVA helmet. So, he used his right hand only and tried a sort of flick at the ball like a gardener whacking weeds with a scythe.

His first stroke at the first ball barely moved it. The second try was shanked and obviously didn’t go far, prompting a mocking reaction from Mitchell. But after the third and final try, on a second ball, Shepard exclaimed as if he was Lee Trevino admiring a perfect drive: “Miles and miles and miles!” That’s the shot viewers imagined might’ve flown on and on, unencumbered by atmosphere.

Saunders has been working on all the Apollo moon footage for years now. Some of the results are stunning. In one, you can now clearly see Neil Armstrong’s face behind his visor, a rare shot anyway because he had the still camera for most of the EVA and almost all the lunar shots you see of Apollo 11 are of lunar module pilot and fellow moonwalker Buzz Aldrin.

So, the Apollo 14 enhancement is only part of a massive project. But the Shepard golf ball search was an obvious attraction:

“Before, maybe you could find a golf ball in the old quality. It looked a bit like a rock even in the new high-res scans. But [now] you could zoom in so far, because they were in such high resolution, and process them hard enough that you could tell – that was definitely a golf ball.”

Alan Shepard's golf shots

Wide-frame of Apollo 14 landing site with locations of divots and ball landing spots of Alan Shepard’s golf shots.NASA

Saunders was able to find and triangulate the position of both balls using frontal and lateral still photos from the portable lunar camera and overhead photos from the video camera atop the ascent stage of the lunar module as it blasted off to return to the command module.

The conclusion: Shepard’s first shot went 24 yards. The landing spot of his second one, which had never before been glimpsed, was not in fact “miles and miles” away, as most who knew Shepard’s mischievous nature pretty much suspected – but a mere 40 yards.

Alan Shepard's golf shots

Enhanced still frame taken from lunar ascent vehicle camera as Apollo 14 blasted from the lunar surface, including Shepard’s golf balls and Ed Mitchell’s “javelin” throw of an unused metal rod.Andy Saunders/NASA

Another tall golf tale. Saunders gives him all credit regardless:

“One-handed, quarter swing, can’t see properly, with that giant backpack on, hitting from effectively the biggest sand trap in the solar system? Well done.”

Theoretically, how far could a golf ball be driven on the moon by some bomber such as Bryson DeChambeau, given a hypothetical future in which humans could be protected from the extreme lunar temperatures in formfitting coveralls we can’t imagine today, maybe at some sort of sheltered lunar Topgolf franchise? Saunders did the math and says Shepard’s exaggeration would no longer be one: about 3.41 miles.

Alan Shepard was a man of myriad accomplishments including uncommon bravery as both a jet fighter test pilot, not to mention his mounting a Redstone rocket in 1961, previous editions of which had blown up on the pad, to be first American to ride the fire into space.

Yet, nuttily enough, he is still possibly best known 23 years after his death for being the only Moon golfer.

He probably wouldn’t mind, as he later affirmed of that 6-iron from a bad lie:

“It was designed to be a fun thing. Fortunately, it was a fun thing.”

More PennLive sports coverage:

Four strange factoids about Super Bowl 55 including a lot of firsts for old guys.

Hall of Fame candidates like Curt Schilling are judged not only as professionals but as people – just like all of us.

Why those who love college basketball the most loved John Chaney most of all.

Continue Reading

Trending