Connect with us

Science

How NASA engineers developed a ventilator for COVID-19 patients in just a month – The Verge

Published

on

How NASA engineers developed a ventilator for COVID-19 patients in just a month – The Verge_5eaa028bd356a.jpeg

Working as an engineer at NASA’s Jet Propulsion Laboratory, David Van Buren usually spends his time designing and building instruments for space telescopes or robots that will explore other worlds in our Solar System. But for the last month, Van Buren and a group of his colleagues at JPL have been working on a project that is truly unexplored terrain for them: making a ventilator to help patients sick with COVID-19.

While Van Buren had some previous experience in medical engineering, he’d never designed a ventilator before. But he and his co-workers at JPL are used to making things they don’t have any experience making. In fact, they’re used to making things that no one has experience making.

“When a scientist comes to us and says they want to go to a moon of Jupiter and drill into the ice and see what’s underneath, that’s something that’s never been done before,” Van Buren tells The Verge. “We’re used to looking at new problems — things people haven’t done before or at least that we haven’t done before — and figuring out how to do them.”

After a whirlwind 37 days of research, planning, and tinkering, a subset of engineers at JPL have created a prototype they’re calling the VITAL ventilator. A white digital box with a breathing tube attached, the ventilator is somewhere between the sophisticated high-end ventilators that the sickest patients need and a simple ambulatory bag that can be used as a temporary measure to quickly squeeze air into the lungs. The team didn’t want to interfere with the production of the more critical ventilators, so the VITAL ventilator is meant for the patients who still need breathing support but are not in the most dire conditions. It’s a temporary tool designed to last just three to four months in a hospital.

VITAL is tailored specifically for people with COVID-19, which helped to guide its design. “It’s pared down in all the things that it can do, to just retain those functions needed for COVID-19 patients,” says Van Buren.

The VITAL ventilator.
Image: NASA

Throughout January and February, Van Buren had been following the news about the spread of COVID-19 in China with growing concern. Pandemics have been on his mind ever since the outbreak of H1N1 in 2009 when his daughter had to be hospitalized because of the new flu strain.

When it became clear in early March that there was community spread of COVID-19 in Washington and California, Van Buren really started focusing on what he could do to help. Early models suggested that hospitals would not have enough capacity or equipment to handle the influx of COVID-19 patients. Van Buren figured JPL could be an asset in the fight. One day, he bumped into Rob Manning, JPL’s chief engineer, in the center’s cafeteria, and they started talking about what they could do. “We both had been thinking, given the circumstances, maybe the projects that we were spending our time on might not be the most important things we could be doing, given what we both recognized was about to happen,” Van Buren says.

Manning found money to form a small team, and the project kicked off on March 16th. The group contacted a pulmonologist named Michael Gurevitch who’s been working on ventilators for decades. He came in and told the team the exact requirements that were needed for ventilators, while a JPL employee took detailed notes on a giant whiteboard.

“We more or less applied the pattern we apply when we build an instrument to land on Mars and, say, drill through the surface and take measurements of what’s down below,” says Van Buren. “We engage with scientists. In this case, we engaged with the clinicians as to what exactly is needed, so that we can then engineer an instrument — or in this case, a ventilator.”

Eventually, other people at JPL joined the project, including Michelle Easter. Normally, she works on mechanisms known as actuators. These motors are used to deploy or rotate instruments like solar panels during a mission.

“Actuators are often a combination of mechanisms and electronics,” Easter tells The Verge. “And that’s exactly what the VITAL device is; it’s a mechanism that’s controlled by embedded electronics, and that type of design is something super comfortable for me.”

To make VITAL, the team tried to use as many common, off-the-shelf parts as possible, such as tubing, motors, valves, and electronics displays. That way, anyone manufacturing the device in the future wouldn’t need to special order anything needed for a more sophisticated ventilator. The team found that companies and vendors were eager to help provide supplies that could be scalable. And when they didn’t have what JPL needed, they gave them references.

“Companies were just opening up their Rolodexes and giving us the names of their competitors,” says Easter, “which is not what you think for a business mindset. But people threw all of the traditional competition out the window.”

Eventually, the team settled on the final VITAL design. Because the machine is tailored for COVID-19 patients, it’s focused on providing air delicately to stiff lungs — a hallmark symptom of the virus. Stiff lungs have a harder time expanding, so patients struggle to get enough air to breathe. VITAL is meant to provide enough air pressure to patients to inflate their lungs but not so much so that the lungs over-expand. The machine also works to ensure the lungs don’t completely deflate, either. COVID-19 patients have lung damage that makes the sides of their lungs inflamed and sticky. If all the air goes out of their lungs and the sides touch each other, they might stick together and make it even harder to open back up again. So VITAL tries to keep the lungs slightly inflated whenever patients exhale.

JPL is equipped with various test facilities, such as a giant vacuum chamber used to subject spacecraft to extreme environments.
Image: NASA

Now that the team has a working prototype, they’ve moved on to environmental testing with the device. Whenever NASA sends a spacecraft to another world, each vehicle must be subjected to extreme conditions — such as wide-ranging temperatures, intense vibrations, loud sounds, and more — to see if it can withstand the harsh environment of space. Many of those same tests are needed to qualify medical equipment, too, and JPL has the facilities to run them, including a giant vacuum chamber and setups to shake hardware rigorously.

“We build spacecraft not medical devices, but there are so many similar elements, because they both have to be extremely high reliability systems — for different reasons,” says Easter. “For spacecraft, once you put it up in space, you will never be able to go and fix it. So we have to verify that it’s absolutely perfect and works exactly as we expect in all conditions. Then, of course, for the medical devices, we’re connecting this to a human; we have to verify that we’re not going to hurt a person. They’re both very, very important.”

Since the Food and Drug Administration is encouraging organizations to create new devices quickly to combat COVID-19, many of the tests usually required to certify equipment are no longer needed. But JPL still has to do elevation testing with VITAL to see if the machine will work in places like Denver, for instance. They also need to do electromagnetic interference testing, which will determine if VITAL can operate normally if someone is, say, talking on a cellphone nearby.

While the final round of testing is being completed, JPL is awaiting word from the FDA on whether VITAL will receive an emergency use authorization. Once they get approval, the team will then send the design off to companies that can produce VITAL en masse and deliver the ventilators to hospitals in need. “We don’t do production,” says Van Buren. “We do make one or two of a kind, and we send them off to Mars or Saturn or somewhere. And so we have engaged a couple of companies to help us understand the mass production aspects.”

It’s unclear how the team will proceed when the VITAL ventilator is shipped out into the world. Many of the people on the team put their normal projects on pause to get this ventilator ready as soon as possible. They’ll likely go back to designing interplanetary space probes very soon, but they’ve been buoyed by their brief stint in the medical world.

“I think everybody on the team is just so grateful that we have something positive to contribute in our brainpower and our teamwork,” says Easter. “It definitely helps us to feel empowered in an otherwise powerless kind of situation.”

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Science

Astronomers Detect a Suspiciously Shaped Galaxy Lurking in The Very Early Universe

Published

on

By

Astronomers Detect a Suspiciously Shaped Galaxy Lurking in The Very Early Universe_5ec5b2be6848e.jpeg

Around 13.8 billion years ago, somehow the Universe popped into existence. But it didn’t come fully equipped. At some point, the first stars formed, and the first galaxies. How and when this happened is still a mystery astronomers are trying to solve… but one galaxy could have a vitally important key.

 

It’s called DLA0817g – nicknamed the Wolfe Disk – a cool, rotating, gas-rich disc galaxy with a mass of about 72 billion times that of our Sun. And the Atacama Large Millimeter/submillimeter Array has snapped it a massive 12.5 billion light-years away – when the Universe was just 10 percent of its current age.

It’s the earliest rotating disc galaxy astronomers have found yet, and its very existence changes our understanding of galaxy formation in the early Universe.

Most of the galaxies in the early Universe are a hot mess, literally. They’re all blobby, with stars flying every which way, and rather high temperatures. Astronomers have interpreted this to mean that they grew large by colliding and merging with other galaxies – a hot, messy process.

“Most galaxies that we find early in the Universe look like train wrecks because they underwent consistent and often ‘violent’ merging,” explained astronomer Marcel Neeleman of the Max Planck Institute for Astronomy in Germany.

“These hot mergers make it difficult to form well-ordered, cold rotating disks like we observe in our present Universe.”

 

Under this scenario, it takes a long time for the galaxies to cool down and smooth out into the more orderly rotating disc galaxies like the Milky Way. We don’t generally start seeing them until about 4 to 6 billion years after the Big Bang.

This is the “hot” mode of galaxy formation. But astronomers had also predicted and simulated another way – the “cold” mode. 

First, you need to start with the primordial soup, an ionised quark-gluon plasma that filled the Universe before the formation of matter. To go from this homogeneous plasma to a Universe filled with stuff, astrophysicists have run simulations that suggest dark matter is responsible.

We don’t know what dark matter is. We can’t detect it directly, but it interacts gravitationally with normal matter. It helps to hold galaxies together, and we believe that it could be crucial to galaxy formation, clumps of it pulling together gas and stars into galaxies.

Supercomputer simulations have shown that a massive network of dark matter in the early Universe could have facilitated the formation of cool galaxies. If the gas was cool to start with, it could have been fed along filaments of the network into the dark matter clumps, accreting into large, cool, orderly disc galaxies.

 

But the only way to confirm this model is through observational evidence, so the researchers went looking, using the light of even more distant galaxies, called quasars, to illuminate the way.

Distant galaxies are very hard to see, but quasars are among the most luminous objects in the Universe – galaxies lit by an active supermassive black hole, the space around it blasting out radiation as it feeds. The team turned ALMA’s powerful capabilities to these distant quasars, looking for signatures in their light that showed that it had passed through a gas-filled galaxy on the way.

They found it. The light from one of the quasars they imaged had passed through a region rich with hydrogen – the signature of the Wolfe Disk.

And there was something else. The light on one side of the disc was compressed, or blueshifted. We see this when something is moving towards us. And the light from the other side was stretched, or redshifted – moving away from us. The object was rotating.

Those Doppler shifts, as they are known, then allowed the researchers to calculate the velocity of the galaxy’s rotation: around 272 kilometres per second.

What’s even more wild is that the team believes the Wolfe Disk isn’t one of a kind. 

“The fact that we found the Wolfe Disk using this method, tells us that it belongs to the normal population of galaxies present at early times,” Neeleman said.

“When our newest observations with ALMA surprisingly showed that it is rotating, we realised that early rotating disk galaxies are not as rare as we thought and that there should be a lot more of them out there.”

The team will continue their search for these galaxies to find out just how common cold accretion was in the early Universe.

The research has been published in Nature.

 

Continue Reading

Science

NASA’s head of human spaceflight abruptly resigns, citing ‘mistake’ – CNN

Published

on

By

NASA’s head of human spaceflight abruptly resigns, citing ‘mistake’ – CNN_5ec5b2b4e863d.jpeg

His departure was effective on Monday.

The incident in question was related to the Artemis Program, a source familiar with the matter told CNN Business.
The Artemis Program seeks to return astronauts to the moon by 2024, which was announced by the Trump administration last year and has been criticized as unrealistic. The source familiar with the reason for Loverro’s departure said the issue centered on contracts that were awarded earlier this year for development of lunar landers, or vehicles that can carry astronauts to the moon’s surface.

When reached by phone Tuesday evening, Loverro declined to comment on the reason for his departure.

Loverro began serving in his role as the head of NASA’s human spaceflight programs in December, replacing William Gerstenmaier, who served in the role for more than a decade. In his nearly 700-word note, Loverro told NASA workers only that leaders are “called on to take risks” and added that, “I took such a risk earlier in the year because I judged it necessary to fulfill our mission.”

“Now, over the balance of time, it is clear that I made a mistake in that choice for which I alone must bear the consequences,” Loverro wrote. “And therefore, it is with a very, very heavy heart that I write to you today to let you know that I have resigned from NASA effective May 18th, 2020.”

NASA’s Office of the Inspector General announced an audit of the agency’s acquisition strategy for the Artemis program in March, though it’s unclear if that review was related to Loverro’s departure. It’s also unclear exactly what role Loverro played in the selection process.
The source familiar with the matter, who asked to remain anonymous because the space agency has not yet publicized details, told CNN Business that the incident in question was unrelated to NASA’s historic milestone next week when SpaceX, NASA’s partner in the Commercial Crew Program, launches two astronauts to the International Space Station. That mission will mark the first time since 2011 that humans have launched into orbit from US soil, and Loverro was slated to preside over a final technical review meeting on Thursday, ahead of launch on May 27. Steve Jurczyk, NASA’s associate administrator, will take over Loverro’s role at that meeting, according to NASA.

Ken Bowersox, NASA’s acting deputy associate administrator for human exploration and operations, will become NASA’s interim head of human spaceflight.

Loverro’s exit immediately raised some eyebrows on Capitol Hill.

Meet the NASA astronauts who will fly on historic SpaceX mission

Congresswoman Eddie Bernice Johnson, a Democrat from Texas who chairs the House space and science committee, said in a statement that she was “shocked” by the news.

“I trust that NASA Administrator Bridenstine will ensure that the right decision is made as to whether or not to delay the launch attempt,” Johnson said. “Beyond that, Mr. Loverro’s resignation is another troubling indication that the Artemis Moon-Mars initiative is still not on stable footing. I look forward to clarification from NASA as to the reasons for this latest personnel action.”

Kendra Horn, a Democrat from Oklahoma who chairs a House subcommittee on space, said in a tweet Tuesday that she is “deeply concerned over this sudden resignation, especially eight days before the first scheduled launch of US astronauts on US soil in almost a decade.”

The timing of Loverro’s departure was related to when Jurczyk, the associate administrator, made a recommendation to NASA Administrator Jim Bridenstine, the source said. It was unrelated to next week’s Crew Dragon launch, the source added.

Jurczyk was the source selection officer for the Artemis lunar lander contract awards, according to public documents.

In announcing Loverro’s appointment in October, NASA chief Jim Bridenstine called Loverro “a respected strategic leader in both civilian and defense programs” who “will be of great benefit to NASA at this critical time in our final development of human spaceflight systems for both Commercial Crew and Artemis.”

An agency-wide email sent on Tuesday said Loverro “hit the ground running” after his appointment in 2019 and had made “significant progress in his time at NASA.”

“His leadership of [NASA’s Human Exploration and Operations] has moved us closer to our goal of landing the first woman and the next man on the moon in 2024,” the email said. It said his resignation was effective immediately, though it did not provide details on the reason for his exit.

A NASA spokesperson declined to comment.

Loverro told CNN Business he is “100% confident” that leadership will be able to carry out the SpaceX mission. He added that he believes NASA’s ambitious human spaceflight goals are “doable.” “But,” he added, “it will take risk takers to get us there, and I hope folks who step in my shoes will continue to take risks.”

Next week’s SpaceX launch will mark the space agency’s highest-profile mission since the Space Shuttle program ended in 2011. SpaceX, which has a multibillion-dollar contract under NASA’s Commercial Crew Program, has worked for the better part of a decade to ready its Dragon spacecraft for crewed flights to the International Space Station. Since the Shuttle retired, NASA has had to rely on Russia for rides to the ISS.

Continue Reading

Science

In an orange swirl, astronomers say humanity has its first look at the birth of a planet

Published

on

By

In an orange swirl, astronomers say humanity has its first look at the birth of a planet_5ec5b2aa94bef.jpeg

An image of a mesmerizing cosmic spiral, twisting and swirling around a galactic maw, may be the first direct evidence of the birth of a planet ever captured by humanity.

The European Southern Observatory released a picture Wednesday of what astronomers believe shows the process of cosmic matter at a gravitational tipping point, collapsing into a new world around a nearby star.

Astronomers said the dramatic scene offers a rare glimpse into the formation of a baby planet, which could help scientists better understand how planets come to exist around stars.

“Thousands of exoplanets have been identified so far, but little is known about how they form,” the lead author of a study detailing the discovery, Anthony Boccaletti, an astronomer at the Observatoire de Paris in France, said in a statement.

Planets are thought to form out of the massive discs of gas and dust that surround young stars. As tiny specks of dust circle a star and collide with one another, some material starts to fuse, much like how rolling a snowball through more snow will eventually yield a bigger snowball. After billions of years, the clumps of material become large enough that the force of gravity shapes them into planets.

The new image peers into the disc of material around a young star known as AB Aurigae, which is 520 light-years from Earth in the constellation of Auriga. Amid the hypnotic spiral arms is a “twist,” visible in the photo as a bright yellow region in the center, that is thought to be a sign of a planet being born, said Emmanuel Di Folco, a researcher at the Astrophysics Laboratory of Bordeaux in France, who participated in the study.

When a planet forms, the clumps of material create wavelike perturbations in the gas- and dust-filled disc around a star, “somewhat like the wake of a boat on a lake,” Di Folco said.

The bright region at the center of the new image is thought to be evidence of such a disturbance, which had been predicted in models of planetary birth.

Download the NBC News app for breaking news and alerts

“The twist is expected from some theoretical models of planet formation,” said Anne Dutrey, an astronomer at the Astrophysics Laboratory of Bordeaux and co-author of the study, published Wednesday in the journal Astronomy & Astrophysics. “It corresponds to the connection of two spirals — one winding inwards of the planet’s orbit, the other expanding outwards — which join at the planet location.”

The new observations of the baby planet were made in 2019 and early 2020 by the European Southern Observatory’s Very Large Telescope in the Atacama Desert in northern Chile. The research team, made up of astronomers from France, Taiwan, the U.S. and Belgium, said the images are the deepest observations of the AB Aurigae system made to date.

Continue Reading

Trending